= EmbryoidBodies2018DataModule(
eb ='pca',
primary=8,
batch_size )
Embryoid Bodies 2018
Embryoid Bodies 2018 dataset.
Constants
DataModule
EmbryoidBodies2018DataModule
EmbryoidBodies2018DataModule (time_col:str='samples', data_dir:str='/home/runner/Downloads/embryo id_2018', batch_size:int=32, use_time_dataset:bool=True, primary:str='counts', dl_kwargs:dict[str,typing.Any]=<factory>, perc_train:float=0.7, perc_valid:float=0.1, perc_test:float=0.2)
eb.does_data_dir_exists, eb.does_sc_rna_dir_exists, eb.has_all_timepoint_dirs
(True, True, True)
eb.setup()
Loading data
Data ready!
= eb.train_dataloader() dl
-5:]].head() eb.train_ds.df[eb.train_ds.df.columns[
d97 | d98 | d99 | d100 | samples | |
---|---|---|---|---|---|
5100 | 0.881895 | -1.463558 | 0.309755 | -0.156539 | Day 06-09 |
15125 | 1.099650 | -1.794608 | -1.442124 | -0.621449 | Day 24-27 |
9431 | -1.441780 | 0.068481 | 2.492943 | 2.289345 | Day 12-15 |
13078 | -0.047084 | 0.543089 | 1.502882 | 1.567946 | Day 18-21 |
3193 | 0.652287 | 0.758303 | 0.681693 | -0.214407 | Day 06-09 |
eb.train_ds.t_min, eb.train_ds.t_max
(0, 4)
for x, y in dl:
break
x.shape, y.shape
(torch.Size([8, 5, 100]), torch.Size([8, 5]))
for x, y in eb.train_ds:
break
x.shape, y.shape
(torch.Size([5, 100]), torch.Size([5]))