mock

mock data.

source

make_dummy_cells

 make_dummy_cells (n:int)

source

make_dummy_genes

 make_dummy_genes (n:int)

source

make_mock_genes_x_tbins

 make_mock_genes_x_tbins (genes:Union[int,List[str],NoneType]=['wasf',
                          'colq', 'gpr1', 'chrm3', 'lmod2', 'tek',
                          'kank3', 'oca2', 'taz', 'map4k1'],
                          tbins:int=100)
df_trj = make_mock_genes_x_tbins()
df_trj.head()
0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
wasf 0 0 0 0 0 0 0 0 0 0 ... 8 9 9 9 9 9 9 9 9 9
colq 9 9 9 9 9 8 8 8 8 8 ... 0 0 0 0 0 0 0 0 0 0
gpr1 0 0 0 0 0 0 0 0 0 0 ... 9 9 9 9 9 9 9 9 9 9
chrm3 9 9 9 9 9 9 9 9 9 9 ... 0 0 0 0 0 0 0 0 0 0
lmod2 0 0 0 0 0 0 0 1 1 1 ... 8 9 9 9 9 9 9 9 9 9

5 rows × 100 columns


source

make_mock_trajectories

 make_mock_trajectories (tbins:int=100, cells:int=50, genes:int=10)
trajs = make_mock_trajectories()
trajs.shape # (tbins, cells, genes)
(100, 50, 10)

source

df_trj_to_genes_x_tbins

 df_trj_to_genes_x_tbins (trajectories:numpy.ndarray, agg_fn=<function
                          mean at 0x7f5c4ed82a70>)

Transpose and aggregate trajectories matrix (timebinse, cells, gene) to produce (genes, timebins)


source

df_trj_to_cells_x_tbins

 df_trj_to_cells_x_tbins (trajectories:numpy.ndarray, agg_fn=<function
                          mean at 0x7f5c4ed82a70>)

Transpose and aggregate trajectories matrix (timebinse, cells, gene) to produce (cells, timebins)

df_trj_to_genes_x_tbins(trajs).shape
(10, 100)