funcs
Granger Causality as functions.
Shift Trajectories
shift_trajectories
shift_trajectories (df:pandas.core.frame.DataFrame, shift:Optional[int]=10, copy:Optional[bool]=True)
Type | Default | Details | |
---|---|---|---|
df | DataFrame | Pandas DataFrame where rows are the response variable (genes), and columns are predictors (expression). |
|
shift | Optional | 10 | number to shift df ’s values by |
copy | Optional | True | Whether or not to copy input df |
Returns | DataFrame | Pandas DataFrame of df - df_shift |
get_pval_from_granger_causality_tests
get_pval_from_granger_causality_tests (df:pandas.core.frame.DataFrame, test:Optional[str]='ssr_chi2test', lag_order:Optional[int]=1, max_lag:Optional[tuple]=(1,))
Type | Default | Details | |
---|---|---|---|
df | DataFrame | Pandas DataFrame where rows are the response variable (genes), and columns are predictors (expression). |
|
test | Optional | ssr_chi2test | the kind of statistical test to use |
lag_order | Optional | 1 | how long to lag |
max_lag | Optional | (1,) | if None coerced to (1, ) |
Returns | float | minimum p-value of Granger Causality Tests |
Granger Causation
grangers_causation_matrix
grangers_causation_matrix (df:pandas.core.frame.DataFrame, x_vars:Union[l ist,pandas.core.series.Series,numpy.ndarray,It erable[numbers.Number],Any,List[int],List[Unio n[bool,numpy.bool_,Literal[0],Literal[1]]],pan das.core.indexes.base.Index,NoneType]=None, y_ vars:Union[list,pandas.core.series.Series,nump y.ndarray,Iterable[numbers.Number],Any,List[in t],List[Union[bool,numpy.bool_,Literal[0],Lite ral[1]]],pandas.core.indexes.base.Index,NoneTy pe]=None, test:Optional[str]='ssr_chi2test', lag_order:Optional[int]=1, max_lag:Optional[tuple]=(1,), n_jobs:Optional[int]=-1)
Computes Granger Causality
Type | Default | Details | |
---|---|---|---|
df | DataFrame | Pandas DataFrame where rows are the response variable (genes), and columns are predictors (expression). |
|
x_vars | Union | None | A subset of response variable (genes) to compute granger’s causality test with. If not provided, defaults to df.index.values i.e. all rows in df . |
y_vars | Union | None | A subset of response variable (genes) to compute granger’s causality test with. If not provided, defaults to df.index.values i.e. all rows in df . |
test | Optional | ssr_chi2test | the kind of statistical test to use |
lag_order | Optional | 1 | how long to lag |
max_lag | Optional | (1,) | if None coerced to (1, ) |
n_jobs | Optional | -1 | number of cpu threads to use during calculation |
Returns | DataFrame | Pandas DataFrame with shape (len(x_vars), len(y_vars)) containing theminimum p-value from Granger’s Causation Tests |
calculate_granger_causation
calculate_granger_causation (df:pandas.core.frame.DataFrame, x_vars:Union [list,pandas.core.series.Series,numpy.ndarra y,Iterable[numbers.Number],Any,List[int],Lis t[Union[bool,numpy.bool_,Literal[0],Literal[ 1]]],pandas.core.indexes.base.Index,NoneType ]=None, y_vars:Union[list,pandas.core.series .Series,numpy.ndarray,Iterable[numbers.Numbe r],Any,List[int],List[Union[bool,numpy.bool_ ,Literal[0],Literal[1]]],pandas.core.indexes .base.Index,NoneType]=None, shift:Optional[int]=10, test:Optional[str]='ssr_chi2test', lag_order:Optional[int]=1, max_lag:Optional[tuple]=(1,), n_jobs:Optional[int]=-1)
Computes Granger Causality
Type | Default | Details | |
---|---|---|---|
df | DataFrame | Pandas DataFrame where rows are the response variable (genes), and columns are predictors (expression). |
|
x_vars | Union | None | A subset of response variable (genes) to compute granger’s causality test with. If not provided, defaults to df.index.values i.e. all rows in df . |
y_vars | Union | None | A subset of response variable (genes) to compute granger’s causality test with. If not provided, defaults to df.index.values i.e. all rows in df . |
shift | Optional | 10 | number to shift df ’s values by |
test | Optional | ssr_chi2test | the kind of statistical test to use |
lag_order | Optional | 1 | how long to lag |
max_lag | Optional | (1,) | if None coerced to (1, ) |
n_jobs | Optional | -1 | number of cpu threads to use during calculation |
Returns | DataFrame | Pandas DataFrame with shape (len(x_vars), len(y_vars)) containing theminimum p-value from Granger’s Causation Tests |